Les bases du codage en imagerie

J.M. BONNY

STIM-UR QuaPA, INRA Clermont-Fd

De l'espace k à l'image

Excitation sélective d'une coupe épaisse

Introduction à l'imagerie parallèle

Introduction

GERM 2010, Saint-Dié

Détection et acquisition en RMN

Rappels historiques

Première image de Lauterbur en 1973

Quelques exemples ...

Novak et al., Magn. Reson. Imaging (2005)

Quelques exemples ...

Bonny et al., Neurobiol. Dis. (2004)

Comment obtenir (rapidement) plusieurs signaux RMN localisés ?

Outils permettant de décrypter la plupart des méthodes de codage spatial

Balayage de l'espace k

Sélection de tranche

Reconstruction parallèle

Manipulation des contrastes pas abordée

Relaxation négligée

Spins non couplés

IRM, SRM ... quelle différence ?

Equipement

Aimant

Chaine RF

Chaine de détection

Gradients 3 axes

Séquence

Détection de cohérences

Codage spatial

Séquence de base

Signal d'induction libre (SIL ou FID)

Signal obtenu

Signal RMN au point r après détection en quadrature

$$S(\mathbf{r},t) = \rho(\mathbf{r}) \exp[i\phi(\mathbf{r},t)]$$

Démodulation par rapport à ω_0

$$\phi(\mathbf{r},t) = \int_{0}^{t} [\omega(\mathbf{r},t') - \omega_{0}] dt'$$

Signal provenant de l'échantillon sans codage spatial

$$S(t) = \int \rho(\mathbf{r}) \exp[i\phi(\mathbf{r}, t)] d\mathbf{r}$$

$$S(t) = \int \rho(\mathbf{r}) d\mathbf{r} \qquad \text{Si } \omega(\mathbf{r}) = \omega_0$$

Signal RMN en présence de gradient de champ magnétique

Effet des bobines de gradient

$$\mathbf{G}(t) = \begin{bmatrix} G_x(t) \\ G_y(t) \\ G_z(t) \end{bmatrix} = \begin{bmatrix} \frac{\partial B}{\partial x}(\mathbf{r}, t) \\ \frac{\partial B}{\partial y}(\mathbf{r}, t) \\ \frac{\partial B}{\partial z}(\mathbf{r}, t) \end{bmatrix}$$

$$\omega(\mathbf{r},t) = \gamma \mathbf{G}(t)\mathbf{r} + \omega_0 = \gamma \left[G_x(t)x + G_y(t)y + G_z(t)z\right] + \omega_0$$

A l'origine du repère "image" $\omega(0,t) = \omega_0$

Les bobines de gradient

http://www.dotynmr.com/mri_fcgcpg.htm

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

Séquence en présence de gradients

Signal obtenu

Phase en r à t

$$\phi(\mathbf{r},t) = \int_{0}^{t} [\omega(\mathbf{r},t') - \omega_{0}] dt' = \gamma \int_{0}^{t} \mathbf{G}(t') \cdot \mathbf{r} dt' = 2\pi \mathbf{r} \cdot \mathbf{k}(t)$$

avec

$$\mathbf{k}(t) = \frac{\gamma}{2\pi} \int_{0}^{t} \mathbf{G}(t') dt'$$

Signal provenant de l'échantillon

$$S(\mathbf{k}(t)) = \int \rho(\mathbf{r}) \exp[2\pi i \mathbf{r} \cdot \mathbf{k}(t)] d\mathbf{r}$$

Encodage de Fourier Notion d'espace k

Par définition

$$S(\mathbf{k}) = \int \rho(\mathbf{r}) \exp(2\pi i \mathbf{r} \cdot \mathbf{k}) d\mathbf{r} = TF^{-1}(\rho(\mathbf{r}))$$

$$TF(S(\mathbf{k})) = TF \circ TF^{-1}(\rho(\mathbf{r})) = \rho(\mathbf{r})$$

Espace k réciproque de l'espace image

$$S(\mathbf{k})$$

$$TF^{-1}$$
 $\rho(\mathbf{r})$

Principe du codage de Fourier

- $S(\mathbf{k})$ échantillonné dans un espace cartésien / Espace k
- $\hat{S}(\mathbf{k})$ signal discret sur un support limité

$$\hat{S}(\mathbf{k}) = S(\mathbf{k})$$
.

Reconstruction effectuée par TF discrète (rapide)

$$\hat{S}(\mathbf{k})$$
 TFD $\hat{\rho}(\mathbf{r}) \approx \rho(\mathbf{r})$

Espace k / Espace image

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

Trajectoire dans l'espace k

Evolution des gradients G(t)

Trajectoire dans l'espace k $\mathbf{k}(t)$

Echantillonnage du signal RMN en $\mathbf{k}(t)$

Principe général

Evolution temporelle du gradient $G_i(t)$

Intégration

Trajectoire $\mathbf{k}_{i}(t) = \frac{\gamma}{2\pi} \int_{0}^{t} \mathbf{G}_{i}(t')dt'$

Acquisition

Remplissage de l'espace k

Transformée de Fourier

 G_z

G_z -----

Pure phase encoded imaging

Balayage Cartésien de l'espace k

Gradients précédant l'acquisition

Gradient de codage de phase

Codage des 3 directions

Différents modes d'acquisition

Un point du SIL

FID complet

Single Point Imaging

Chemical Shift Imaging

Temps d'acquisition

$$TA = 64^3 \times 1s = 73 \text{ h}$$

$$TA = N_x N_v N_z TR$$

Pure phase encoded imaging

Magnetic Resonance Imaging 19 (2001) 501-503

Application of Single Point Imaging (SPI) to solid state materials

 G_z

Encodage Spin Warp

Balayage Cartésien de l'espace k

Gradient pendant l'acquisition
Gradient de lecture
Une direction

Gradient de codage de phase Autres directions

Temps d'acquisition

$$TA = N_y N_z TR$$

Encodage Spin Warp

 $V=0.05 \times 0.05 \times 0.1 \text{ mm}^3$ Tacq = 30'

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

Encodage par projection

Balayage radial de l'espace k

Gradient pendant l'acquisition Gradient de lecture

Pas de gradient de codage de phase

Temps d'acquisition $TA = N_{\Phi} (N_{\theta}) TR$

TE court si remplissage à partir du centre

Imagerie radiale / TE court

Magnetic Resonance in Medicine 49:991-997 (2003)

Dynamic Radial Projection MRI of Inhaled Hyperpolarized ³He Gas

Jim M. Wild, ^{1*} Martyn N.J. Paley, ¹ Larry Kasuboski, ² Andrew Swift, ¹ Stan Fichele, ¹ Neil Woodhouse, ¹ Paul D. Griffiths, ¹ and Edwin J.R. van Beek ¹

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

G_z -----

Encodage echo planar

Balayage cartésien de l'espace k

Gradient de lecture alterné

Incrément (blip) entre les phases de lecture

Temps d'acquisition TA = TR

Imagerie rapide

Encodage echo planar

Cerveau de rat *in vivo* à 4.7 T $V=0.5 \times 0.5 \times 2 \text{ mm}^3$ $T_{acq} = 4.8$ " $RSB \approx 80$

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

Spirale

Rosette

Stochastiques

Autres trajectoires, autres reconstructions ...

TFD méthode de référence en cas d'échantillonnage cartésien de l'espace k $\rho(\mathbf{r}) = \sum_{k_i} \sum_{k_j} \hat{S}(\mathbf{k}) \exp(-2\pi i \mathbf{r}.\mathbf{k})$

En cas d'échantillonnage non cartésien

TFD pondérée
$$\rho(\mathbf{r}) = \sum_{k_i} \sum_{k_j} W(\mathbf{k}) \hat{S}(\mathbf{k}) \exp(-2\pi i \mathbf{r}.\mathbf{k})$$

Interpolation cartésienne de $\hat{S}(\mathbf{k})$ avant TFD

(…)

Sélection de coupe

Principe d'une sélection de tranche

Excitation sélective d'une coupe épaisse

Application d'un gradient constant

Direction $\mathbf{G}/\|\mathbf{G}\|$ Amplitude $\|\mathbf{G}\|$

Impulsion RF sélective en fréquence

Fréquence centrale ω

Bande-Passante $\Delta \omega$

Forme

Synthèse d'une impulsion sélective

Problème inverse Formes algébriques prédéterminées Transformées existantes

 $M_T(\omega) \rightarrow B1(t)$ Gauss, Sinc, Sech (...) TF pour petits angles Algorithme de Shinnar-Leroux Inverse Scattering transform

Introduction à l'imagerie parallèle (en réception)

Signal obtenu avec Mantennes réceptrices

M signaux simultanés provenant de l'échantillon

Signal de l'antenne
$$m$$
 $S_m(\mathbf{k}(t)) = \int B_m(\mathbf{r})\rho(\mathbf{r})\exp[2\pi i \mathbf{r}.\mathbf{k}(t)]d\mathbf{r}$

 $B_m(\mathbf{r})$ connu *a priori* en module et phase

Problème de reconstruction

Comment estimer $\rho(\mathbf{r})$ à partir des M acquisitions ? Pour toute trajectoire $\mathbf{k}(t)$

Quelques solutions ... NMR phased array

Les réseaux d'antennes

MAGNETIC RESONANCE IN MEDICINE 16, 192-225 (1990)

The NMR Phased Array

P. B. Roemer,* W. A. Edelstein,* C. E. Hayes,† S. P. Souza,* AND O. M. Mueller*

*GE Corporate Research and Development Center, Schenectady, New York 12301; †GE Medical Systems, Milwaukee, Wisconsin 53201

Quelques solutions ... NMR phased array

Les réseaux d'antennes

Somme quadratique des images reconstruites séparément Gain en homogénéité et en sensibilité

Quelques solutions ...

Sous-échantillonnage de l'espace k

P points

Trajectoires diverses

Estimation de l'image dans une grille cartésienne

N points

Accélération si N>P

Indépendamment de B_m

Solutions de reconstruction

Dans l'espace k SMASH, GRAPPA

Dans l'espace image SENSE

Quelques solutions ... SENSE

SENSitivity Encoding = SENSE

$$B_m(\mathbf{r})
ho(\mathbf{r})$$
 $N \text{ points}$

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

Quelques solutions ...

Reconstruction

Problème inverse discret

$$S_{m}(\mathbf{k}_{p}) = \sum_{n=1}^{N} \rho(\mathbf{r}_{n}) B_{m}(\mathbf{r}_{n}) \exp[2\pi i \mathbf{r}_{n}.\mathbf{k}_{p}]$$
suré
Image estimée

Matrice d'encedage

Signal mesuré

Image estimée

Matrice d'encodage E

Solution SENSE

Résolution d'un système linéaire
$$\rho(\mathbf{r}_n) = f(\mathbf{E}, bruit)S_m(\mathbf{k}_p)$$

Taille de E M x P lignes N colonnes

Synthèse et conclusions

Synthèse et conclusions

Outils permettant de décrypter le codage spatial de la plupart des séquences d'imagerie

> Balayage de l'espace k Impulsions sélectives /Sélection de tranche

Imagerie parallèle

Gain en sensibilité et en homogénéité Problème de reconstruction

Perspectives

Mesure des trajectoires réelles Imagerie parallèle en émission **SMART** Imagerie à haut champ (sur des « gros » échantillons) (...)

Références

Article princeps

Lauterbur

Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance.

Nature 242, 190–191 (1973)

Constant Time Imaging

Gravina, Cory

Sensitivity and resolution of constant-time imaging.

J. Magn. Reson. B. 104, 53-61 (1994)

Chemical Shift Imaging

Brown, Kincaid, Ugurbil

NMR chemical shift imaging in three dimensions.

Proc Natl Acad Sci U S A. 11, 79 (1982)

Spin Warp

Edelstein, Hutchison, Johnson, Redpath

Spin warp NMR imaging and applications to human whole-body imaging.

Phys Med Biol. 25, 751-756 (1980)

ALIMENTATION **AGRICULTURE** ENVIRONNEMENT

Impulsions sélectives

Fourier / Petits angles

Hoult

The solution of the bloch equations in the presence of a varying B1 field-An approach to selective pulse analysis

J Magn Reson 35, 69-86 (1979)

Sech / Passages adiabatiques

Silver, Joseph, Hoult Highly selective $\pi/2$ and π pulse generation J Magn Reson 59, 347-351 (1984)

Transformée de Shinnar/LeRoux (SLR)

Pauly, LeRoux, Nishimura, Macovski

Parameter relations for the Shinnar-LeRoux selective excitation pulse design algorithm *IEEE Trans. Med. Imaging* 10, 53-65 (1991)

Mise en œuvre pratique SLR

Matson

An integrated program for amplitude-modulated RF pulse generation and re-mapping with shaped gradients

Magn. Reson. Imaging 12, 1205-1225 (1994)

Imagerie phased array

Roemer, Edelstein, Hayes, Souza, Mueller The NMR Phased Array *Magn Reson Med* 16, 192-225 (1990)

Encodage et reconstruction

Noll

Recent advances in MRI www.eecs.umich.edu/~dnoll/recent_adv_embs.pdf

Pruessmann Encoding and reconstruction in parallel MRI NMR Biomed 19, 288-299 (2006)

