GERM, St Dié des Vosges, 05/08/2010

OPTIMISATION DE LA RMN 2D ULTRARAPIDE POUR L'ANALYSE STRUCTURALE DE MOLECULES ORGANIQUES

Patrick GIRAUDEAU et Serge AKOKA

CEISAM, Université de Nantes, France

Principe

Spectre 2D en un seul scan!

L. Frydman *et al.* Proc. Natl. Acad. Sci. USA 2002, 99, 15858

Exemple – COSY Ultrarapide

Ethanol/Methanol, 100 mM

Limites en résolution et sensibilité

4

Limites en résolution et sensibilité

Exemple : RMN 2D J-résolue ultrarapide $T_e = 60 \text{ ms}$ $T_e = 120 \text{ ms}$

 $\Delta v = 17 \pm 1 \text{ Hz}$

 $S/B = 140 \pm 15$

P. Giraudeau et al. JMR 190 (2008)

 $\Delta v = 13 \pm 1 \text{ Hz}$ S/B = 15 ± 5 Distorsions d'intensité

Solution : excitation multi-écho

 $T_e = 120 \text{ ms}, 2 \text{ échos}$

 $T_e = 120 \text{ ms}, 6 \text{ échos}$

Limitations : largeur spectrale, sensibilité et résolution

 Δv : Résolution (largeur des pics dans la dimension ultrarapide)

$$\gamma \cdot G_a \cdot L = \frac{2 \cdot SW_1 \cdot SW_2}{\Delta \upsilon} \qquad S / B = \sqrt{\frac{\Delta \upsilon}{2 \cdot SW_1 \cdot SW_2}}$$

Y. Shrot et al. J. Chem. Phys. 2009

Pas de repliement possible dans la dimension ultrarapide ! (pas de TF)

Largeurs spectrales : Solutions proposées

Méthodes basées sur des impulsions sélectives

Grandes gammes spectrales sans perte de résolution ou S/B
Pas d'impulsions sélectives

☑ Facile à implémenter en routine

Applicable à la quasi-totalité des expériences ultrarapides

P. Giraudeau et al. J. Magn. Reson. (2010), sous presse

COSY-DQF ultrarapide - Ibuprofène 100 mM

F1 [ppm]

5

50

3.0

zTOCSY Ultrarapide

2D TOCSY Conventionnelle – 50 min

2D TOCSY Ultrarapide – 0.2 s

Application à la RMN 2D Hétéronucléaire

HSQC Ultrarapide

Conclusion

- Méthodes ultrarapides optimisées (S/B, résolution, SW)
- Facilement implémentable en routine
- Applicable à des échantillons de complexité croissante

Perspectives

- Ajustement automatique des paramètres expérimentaux
- Reconstruction des spectres non-repliés
- Vers une utilisation en routine de la RMN 2D ultrarapide...

Remerciements

Groupe EBSI-Nantes

Serge Akoka

Benoît Charrier

Virginie Silvestre

Gérald Remaud

Illa Tea

Estelle Martineau

Et l'ensemble du groupe...

Collaborateurs

Weizmann Institute, Rehovot

Lucio Frydman Yoav Shrot Talia Harris *Etc...*

Université de Toulouse

Jean-Charles Portais Stéphane Massou

CREATIS-LRMN, Lyon

Sophie Cavassila Hélène Ratiney Tangi Roussel

Pauline Lemeunier

Mathieu Coutand