

IRM bas champ

M. Pannetier-Lecoeur

Service de Physique de l'Etat Condensé

CEA-Saclay

Plan

• L'IRM à bas champ

Les capteurs pour l'IRM bas champ

Les contrastes

Perspectives

IRM haut champ

- Technique d'imagerie basée sur la résonance magnétique nucléaire des protons
- Environ 30000 systèmes commerciaux
- Standards à 1.5T, développement à 3T et plus
- Systèmes assez volumineux et relativement fermés, d'un coût assez élevé (1.5M€)

L'IRM bas champ: un intérêt médical

Systèmes moins couteux, plus transportables

- Champs faibles => bobines non supraconductrices
- Pas de problème d'approvisionnement en hélium

Moins d'artéfacts à bas champ et basse fréquence

Le corps humain est conducteur

 \Longrightarrow

Déformations d'image aux champs intenses

Pièces métalliques (implants)

Déformation du champ local

Contraintes moins importantes pour les patients

- Géométrie ouverte (claustrophobie)
- Gradients faibles : pas de nuisance sonore (IRM du nourrisson)
- Pacemaker : sécurité impose B < 5mT
- Prothèses métalliques compatibles avec faibles fréquences

L'IRM bas champ: les contraintes

- Signaux plus petits (proportionnels à la fréquence)
- Sensibilité des bobines décroissante avec la fréquence

$$M = M_0 \cos \omega_0 t = \frac{N \gamma \hbar^2}{4kT} \omega_0 \cos \omega_0 t$$

Resonant coil: $\omega_0 = \gamma B_0$

$$signal \propto \frac{d\phi}{dt} = \frac{d}{dt} MxS = \left[\frac{N\gamma\hbar^2}{4kT} S \right] \omega_0^2 \sin \omega_0 t \propto \omega_0^2$$

→ Nécessité d'utiliser d'autres capteurs, de sensibilité indépendante de la fréquence.

$$signal \propto \phi = MxS = \left[\frac{N\gamma\hbar^2}{4kT}S\right]\omega_0\cos\omega_0t \propto \omega_0$$

Sensibilité des détecteurs

RMN classique = détection de la résonance par bobine accordée

Plan

L'IRM à bas champ

- Les capteurs pour l'IRM bas champ
 - Caractéristiques requises
 - SQUIDs
 - Capteurs mixtes
- Les contrastes

Perspectives

Capteurs pour l'IRM bas champ

- Sensibilité = femtotesla
- Sensibilité à basse fréquence (<MHz)
- Réponse indépendante de la fréquence

• Candidats:

- SQUIDS
- Capteurs mixtes
- Magnétomètres atomiques

SQUIDs:

SQUIDS=dispositifs supraconducteurs basés sur l'effet Josephson (1962)

Un champ magnétique appliqué à la boucle crée un déphasage entre les deux bras, qui se traduit par l'apparition d'une tension aux bornes du SQUID.

Lounasmaa & Seppä

La sensibilité est proportionnelle à la surface de la boucle : pour 4cm², elle est d'environ 1fT/VHz.

SQUIDS

$$M \propto \frac{N\gamma^2\hbar^2}{4kT}B_0$$
$$V \propto M \propto B_0$$

=> Capteur de flux de très grande sensibilité et de réponse plate en fréquence

Utilisation des SQUIDs en IRM (très) bas champ

- Champ de prépolarisation (quelques mT 30mT)
- Mesure en champ faible ou très faible ($50\mu T^* 100nT^{**}$)
- Pas de pulse RF pour un FID simple (Bmes perp. À Bprepol)

^{*}Berkeley, LANL

^{**}PTB

Utilisation des SQUIDs en IRM (très) bas champ

-Avantages:

- Signal assez grand
- Pas d'homogénéité de champ requise pour la prépolarisation

-Inconvénients:

- Nécessité de travailler en environnement blindé
- Perte d'une petite partie du signal pendant la baisse du champ de polarisation (blanking du SQUID)
- Séquences sophistiquées de RMN non applicables

Largeur de raie à très bas champ

$$1/\pi$$
 T₂ *= $\Delta f' = (\gamma/2\pi) \Delta B = (\gamma/2\pi)(\Delta B/B)B \propto B$
pour une inhomogénéité relative donnée $\Delta B/B$

• Haut champ (~20T):

1Hz de largeur => 1 pour 10⁹ d'homogénéité (shimming nécessaire).

A bas champ (~ 50 μT)

1Hz de largeur => 1 pour 2000 d'homogénéité

RMN très bas champ avec des SQUIDs

~ 1kHz

R. Mc Dermott et al. Science 295, 2247 (2002)

5 ml huile minérale

$$B_0 = 1.8 \text{ mT}$$

10,000 acquisitions

5 ml huile minérale

$$B_{p} = 1.8 \text{ mT}$$

$$B_0 = 1.8 \ \mu T$$

100 acquisitions

RMN dans le microtesla avec des SQUIDs

2,2,2-trifluoroethanol phosphate

PTB Shielded room
Bernarding *et al. JACS* (2006)

SQUID haut- T_c @48.4 μ T Qiu *et al. proc. EUCAS* (2008)

=> Haute résolution dans des microteslas

IRM à très bas champ : système de Berkeley

Séquence pulsée pour de l'imagerie 2D

$$B_p = 50 - 300 \text{ mT, } t_p = 0.1 - 2s$$

 $B_0 = 132 \mu\text{T}$

Image in-vivo d'un bras (Berkeley-J. Clarke)

20 mm

- $B_0 = 132 \mu T$
- $B_p = 40 \text{ mT}$
- Gradients: 150 μT/m
- Temps acquisition : 6 min
- Epaisseur de la tranche : 10 mm
- Résolution dans le plan ~ 2mm

Imagerie cérébrale à 46μT (Los Alamos National Lab – M. Espy, R. Kraus)

- Système 7 canaux
- $B_p = 30 \text{ mT}$
- $B_0 = 46 \mu T$
- Temps d'acquisition : 90 min par orientation
- Epaisseur de tranche 6 mm
- Résolution 3 mm imes 3 mm

Imagerie dans un contenant métallique (Berkeley)

Plan

• L'IRM à bas champ

- Les capteurs pour l'IRM bas champ
 - Caractéristiques requises
 - SQUIDs
 - Capteurs mixtes
- Les contrastes

Perspectives

Capteurs mixtes

Champ (T)

L'électronique de spin pour la magnétométrie

Capteurs mixtes: principe

Gain supérieur à 1000

Science **304**, 1648-1650 (2004)

Capteurs mixtes: principe

Partant d'une détectivité de 20pT/vHz, on combine :

- L' amplification du signal par un facteur 1000
 20fT/VHz
- L'augmentation de la sensibilité de la GMR par un facteur 2 10fT/vHz
- La réduction du bruit par un facteur 10 avec la température

 \Rightarrow 1fT/VHz

Détectivité d'un capteur mixte

Capteur	Gain mesuré	Surface Courant (mm²) maximal		Détectivité* à 77K (fT/√Hz)	Détectivité* à 4K (fT/vHz)	
Nb	108	7x7	1mA	n.a.	600	
Nb	500	15x15	1mA	n.a.	140	
YBCO	160	9x9	15mA	150	32	
YBCO	600	17x17	10mA	25	5	
YBCO	1300	25x25	10mA	8	1.5	
SQUIDS	-	25x25	-	30 (Haut T _c)	1 (Bas T _c)	

^{*} Dans le bruit thermique

RMN bas champ avec un capteur mixte

Acquisition simple à 314kHz (7.5mT) avec un capteur YBCO (77K) non accordé

Système prototype

Homogénéité 10ppm

Correction de gradients statiques

Gradients pour l'IRM

Champ maximal 10mT

Excitation et détection non accordées

Thèse Hadrien Dyvorne

Premières images à 7.5mT

Image d'un tube d'eau ϕ = 30mm

IRM 3D d'une pêche, Résolution = mm³ Temps d'acquisition total (3D) = 12 mn

Plan

L'IRM à bas champ

Les capteurs pour l'IRM bas champ

Les contrastes

Perspectives

Contrastes en IRM bas champ

0.25%

agarose

S. K. Lee et al, Magnetic Resonance in Medicine 53:9–14 (2005)

⇒ Nouveaux contrastes

Exemple d'application:

mesure des T1 dans des cellules prostatiques cancéreuses

Mesures ex-vivo (Berkeley)

Case #	% tumor	T ₁ (ms)	δ	Case #	% tumor	T ₁ (ms)	δ	Case #	% tumor	T ₁ (ms)	δ
1 A	2	85 ± 6	0.22	7 A	0	69 ± 8	0.36	13 A	0	56 ± 10	0.054
1 B	70	66 ± 6		7 B	20	44 ± 5		13 B	10	53 ± 1	
2 A	2	62 ± 9	0.081	8 A	0	78 ± 4	0.31	14 A	10	47 ± 4	-0.34
2 B	20	57 ± 2		8 B	20	70 ± 6	0.23	14 B	40	63 ± 3	
3 A	20	81 ± 6	0.36	8 C	90	54 ± 4		15 A	30	44 ± 3	0.068
3 B	80	52 ± 3		9 A	0	47 ± 7	0.21	15 B	60	41 ± 6	
4 A	0	54 ± 6	0.056	9 B	50	37 ± 3		16 A	25	62 ± 4	0.097
4 B	20	51 ± 4		10 A	0	56 ± 7	0.090	16 B	50	56 ± 8	
5 A	5	67 ± 4	-0.015	10 B	0	51 ± 4		17 A	0	47 ± 3	-0.19
5 B	20	68 ± 4		11 A	0	53 ± 4	0.17	17 B	30	56 ± 1	
6 A	0	62 ± 7	0.24	11 B	50	44 ± 4		18 A	0	57 ± 5	0.21
6 B	40	47 ± 4		12 A	5	75 ± 3	0.040	18 B	50	45 ± 2	
				12 B	5	72 ± 9					

IRM fonctionnelle à bas champ?

 f-MRI haut champ : détection indirecte de l'activité cérébrale à travers le changement de flux sanguin durant l'activation (réponse hémodynamique)

A bas champ :

- Nouveaux mécanismes de couplage entre les spins et les neurones acrifs
- Mesure directe des courants neuronaux (Direct Neuron Imaging)
- Le champ magnétique généré par les courants neuronaux agit sur le fréquence de précession (très petit shift en fréquence attendu mesurable uniquement à extrêmement bas champ*)

^{*} R.H.Kraus et al, Neurolmage 39 (2008) 310–317

Conclusions-Perspectives

Le développement de capteurs de flux extrêmement sensibles a permis d'offrir des solutions adaptées à la RMN et à l'IRM (très) bas champ

Des systèmes sont actuellement testés basés sur les SQUIDs et les capteurs mixtes

Des images offrant une résolution inférieure au mm3 dans des champs <10mT (sans prépolarisation)

La combinaison de ce type d'imagerie avec des mesures biomagnétiques permettront d'obtenir sur une même plateforme des informations anatomiques et fonctionnelles directes

Il reste à développer et adapter des techniques d'acquisition d'images (multi-antennes, multi-slicing, etc...) pour améliorer les qualités d'images à très bas champ.

Remerciements

SPEC Groupe Nano-Magnétisme

Claude Fermon

Jacques-François Jacquinot
Gérald Le Goff
Grégory Cannies
Rubén Guerrero
Natalia Sergeeva-Chollet
Hedwige Polovy
Hadrien Dyvorne
Aurélie Solignac

TRINITY COLLEGE DUBLIN

John Clarke (Berkeley)

Microsystems & Nanotechnologies

