

GERM 2010 – Détection et Acquisition en Résonance Magnétique Saint Dié 4-7 Mai 2010

IRM bas champ

M. Pannetier-Lecoeur Service de Physique de l'Etat Condensé CEA-Saclay

Plan

- L'IRM à bas champ
- Les capteurs pour l'IRM bas champ
- Les contrastes
- Perspectives

IRM haut champ

- Technique d'imagerie basée sur la résonance magnétique nucléaire des protons
- Environ 30000 systèmes commerciaux
- Standards à 1.5T, développement à 3T et plus
- Systèmes assez volumineux et relativement fermés, d'un coût assez élevé (1.5M€)

L'IRM bas champ: un intérêt médical

Systèmes moins couteux, plus transportables

- Champs faibles => bobines non supraconductrices
- Pas de problème d'approvisionnement en hélium

Moins d'artéfacts à bas champ et basse fréquence

Le corps humain est conducteur

Déformations d'image aux champs intenses

Déformation du champ local

Pièces métalliques (implants)

Contraintes moins importantes pour les patients

- Géométrie ouverte (claustrophobie)
- Gradients faibles : pas de nuisance sonore (IRM du nourrisson)
- Pacemaker : sécurité impose B < 5mT
- Prothèses métalliques compatibles avec faibles fréquences

L'IRM bas champ: les contraintes

- Signaux plus petits (proportionnels à la fréquence)
- Sensibilité des bobines décroissante avec la fréquence

$$M = M_0 \cos \omega_0 t = \frac{N \gamma \hbar^2}{4kT} \omega_0 \cos \omega_0 t$$

External field
Nuclear spin
RF
pulse
Sensor

$$\omega_0 = \gamma B_0$$

signal
$$\propto \frac{d\phi}{dt} = \frac{d}{dt} \oint xS = \left[\frac{N\gamma\hbar^2}{4kT}S\right]\omega_0^2 \sin\omega_0 t \propto \omega_0^2$$

→ Nécessité d'utiliser d'autres capteurs, de sensibilité indépendante de la fréquence.

signal
$$\propto \phi = MxS = \left[\frac{N\gamma\hbar^2}{4kT}S\right]\omega_0 \cos\omega_0 t \propto \omega_0$$

Sensibilité des détecteurs

RMN classique = détection de la résonance par bobine accordée

• Les capteurs pour l'IRM bas champ

Plan

- Caractéristiques requises
- SQUIDs
- Capteurs mixtes
- Les contrastes
- Perspectives

- Sensibilité = femtotesla
- Sensibilité à basse fréquence (<MHz)
- Réponse indépendante de la fréquence

- Candidats :
 - SQUIDS
 - Capteurs mixtes
 - Magnétomètres atomiques

SQUIDs : Superconducting Quantum Interference Devices

SQUIDS=dispositifs supraconducteurs basés sur l'effet Josephson (1962)

Un champ magnétique appliqué à la boucle crée un déphasage entre les deux bras, qui se traduit par l'apparition d'une tension aux bornes du SQUID.

La sensibilité est proportionnelle à la surface de la boucle : pour 4cm², elle est d'environ 1fT/VHz.

=> Capteur de flux de très grande sensibilité et de réponse plate en fréquence

CC Utilisation des SQUIDs en IRM (très) bas champ

- Champ de prépolarisation (quelques mT 30mT)
- Mesure en champ faible ou très faible ($50\mu T^* 100nT^{**}$)
- Pas de pulse RF pour un FID simple (Bmes perp. À Bprepol)

*Berkeley, LANL **PTB Utilisation des SQUIDs en IRM (très) bas champ

-Avantages :

- Signal assez grand
- Pas d'homogénéité de champ requise pour la prépolarisation

-Inconvénients:

- Nécessité de travailler en environnement blindé
- Perte d'une petite partie du signal pendant la baisse du champ de polarisation (blanking du SQUID)
- Séquences sophistiquées de RMN non applicables

 $1/\pi T_2$ *= $\Delta f' = (\gamma/2\pi) \Delta B = (\gamma/2\pi)(\Delta B/B)B \propto B$

pour une inhomogénéité relative donnée $\Delta B/B$

• Haut champ (~20T) :

1Hz de largeur \Rightarrow 1 pour 10⁹ d'homogénéité (shimming nécessaire).

• A bas champ (~ 50μ T)

1Hz de largeur => 1 pour 2000 d'homogénéité

RMN très bas champ avec des SQUIDs

R. Mc Dermott et al. Science 295, 2247 (2002)

RMN dans le microtesla avec des SQUIDs

2,2,2-trifluoroethanol phosphate

=> Haute résolution dans des microteslas

IRM à très bas champ : système de Berkeley

Séquence pulsée pour de l'imagerie 2D

Image in-vivo d'un bras (Berkeley-J. Clarke)

20 mm

- $B_0 = 132 \ \mu T$
- B_p = 40 mT
- Gradients: 150 μT/m
- Temps acquisition : 6 min
- Epaisseur de la tranche : 10 mm
- Résolution dans le plan ~ 2mm

Imagerie cérébrale à 46µT (Los Alamos National Lab – M. Espy, R. Kraus)

- Système 7 canaux
- B_p = 30 mT
- $B_0 = 46 \mu T$
- Temps d'acquisition : 90 min par orientation
- Epaisseur de tranche 6 mm
- Résolution 3 mm imes 3 mm

Imagerie dans un contenant métallique (Berkeley)

M. Mössle, Journal of Magnetic Resonance 179 (2006) 146–151

• Les capteurs pour l'IRM bas champ

Plan

- Caractéristiques requises
- SQUIDs
- Capteurs mixtes
- Les contrastes
- Perspectives

œ

Capteurs mixtes

22

L'électronique de spin pour la magnétométrie

Capteurs mixtes : principe

Dispositif à base de supraconducteur à *haute température critique (YBaCuO) Refroidissement à l'azote liquide*

Science **304**, 1648-1650 (2004)

Partant d'une détectivité de **20pT/vHz**, on combine :

- L' amplification du signal par un facteur 1000 20 fT/VHz
- L'augmentation de la sensibilité de la GMR par un facteur 2 10fT/vHz
- La réduction du bruit par un facteur 10 avec la température

$$\Rightarrow$$
 1fT/VHz

Capteur	Gain mesuré	Surface (mm²)	Courant maximal	Détectivité* à 77K (fT/VHz)	Détectivité* à 4K (fT/√Hz)	
Nb	108	7x7	1mA	n.a.	600	
Nb	500	15x15	1mA	n.a.	140	
YBCO	160	9x9	15mA	150	32	
УВСО	600	17x17	10mA	25	5	
YBCO	1300	25x25	10mA	8	1.5	
SQUIDS	-	25x25	-	30 (Haut T _c)	1 (Bas T _c)	

* Dans le bruit thermique

RMN bas champ avec un capteur mixte

Acquisition simple à 314kHz (7.5mT) avec un capteur YBCO (77K) non accordé

Système prototype

Homogénéité 10ppm

Correction de gradients statiques

Gradients pour l'IRM

Champ maximal 10mT

Excitation et détection non accordées

Thèse Hadrien Dyvorne

Premières images à 7.5mT

Image d'un tube d'eau ϕ = 30mm

IRM 3D d'une pêche, Résolution = mm³ Temps d'acquisition total (3D) = 12 mn

Thèse Hadrien Dyvorne

- L'IRM à bas champ
- Les capteurs pour l'IRM bas champ

- Les contrastes
- Perspectives

0.25%

0.5%

S. K. Lee et al, Magnetic Resonance in Medicine 53:9–14 (2005)

 \Rightarrow Mécanismes de couplage avec l'environnement différents

 \Rightarrow Nouveaux contrastes

Exemple d'application : Mesure des T1 dans des cellules prostatiques cancéreuses

Mesures ex-vivo (Berkeley)

Case #	% tumor	T ₁ (ms)	δ	Case #	% tumor	T ₁ (ms)	δ	Case #	% tumor	T ₁ (ms)	δ
1 A	2	85 ± 6	0.22	7 A	0	69 ± 8	0.36	13 A	0	56 ± 10	0.054
1 B	70	66 ± 6		7 B	20	44 ± 5		13 B	10	53 ± 1	
2 A	2	62 ± 9	0.081	8 A	0	78 ± 4	0.31	14 A	10	47 ± 4	-0.34
2 B	20	57 ± 2		8 B	20	70 ± 6	0.23	14 B	40	63 ± 3	
3 A	20	81 ± 6	0.36	8 C	90	54 ± 4		15 A	30	44 ± 3	0.068
3 B	80	52 ± 3		9 A	0	47 ± 7	0.21	15 B	60	41 ± 6	
4 A	0	54 ± 6	0.056	9 B	50	37 ± 3		16 A	25	62 ± 4	0.097
4 B	20	51 ± 4		10 A	0	56 ± 7	0.090	16 B	50	56 ± 8	
5 A	5	67 ± 4	-0.015	10 B	0	51 ± 4		17 A	0	47 ± 3	-0.19
5 B	20	68 ± 4		11 A	0	53 ± 4	0.17	17 B	30	56 ± 1	
6 A	0	62 ± 7	0.24	11 B	50	44 ± 4		18 A	0	57 ± 5	0.21
6 B	40	47 ± 4		12 A	5	75 ± 3	0.040	18 B	50	45 ± 2	
				12 B	5	72 ± 9					

- f-MRI haut champ : détection indirecte de l'activité cérébrale à travers le changement de flux sanguin durant l'activation (réponse hémodynamique)
- A bas champ :
 - Nouveaux mécanismes de couplage entre les spins et les neurones acrifs
 - Mesure directe des courants neuronaux (Direct Neuron Imaging)
 - Le champ magnétique généré par les courants neuronaux agit sur le fréquence de précession (très petit shift en fréquence attendu mesurable uniquement à extrêmement bas champ*)

* R.H.Kraus et al, NeuroImage 39 (2008) 310–317

Le développement de capteurs de flux extrêmement sensibles a permis d'offrir des solutions adaptées à la RMN et à l'IRM (très) bas champ

Des systèmes sont actuellement testés basés sur les SQUIDs et les capteurs mixtes

Des images offrant une résolution inférieure au mm3 dans des champs <10mT (sans prépolarisation)

La combinaison de ce type d'imagerie avec des mesures biomagnétiques permettront d'obtenir sur une même plateforme des informations anatomiques et fonctionnelles directes

Il reste à développer et adapter des techniques d'acquisition d'images (multi-antennes, multi-slicing, etc...) pour améliorer les qualités d'images à très bas champ.

Remerciements

SPEC Groupe Nano-Magnétisme

Claude Fermon Jacques-François Jacquinot Gérald Le Goff Grégory Cannies Rubén Guerrero Natalia Sergeeva-Chollet Hedwige Polovy Hadrien Dyvorne Aurélie Solignac

TRINITY COLLEGE DUBLIN

John Clarke (Berkeley)

Microsystems & Nanotechnologies

